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WHY LINEAR BIRCH AND Ug-Up EXPANSIONS WORK

R. GROVER

Physics Department, University of California, Lawrence Livermore National Laboratory,

P.0. Box 808, Livermore, California 94550*

The equivalence of the Birch-Murnoghan equation to a linear Us'Ug equation was illustrated in the
h

previous paper. Here we show in a direct manner how the virial

eorem boundary localization of

valence electron kinetic energy changes lead to the convergence of the Eulerian strain expansion

about the zero-pressure state.

1. INTRODUCTION

As in the case of the velocity expansion of
shock compression data, the Eulerian finite
strain expression for isothermal pressure-
density data on solids appears to converge so
well that even in the best circumstances it
shows little or no evidence for quadratic
strain terms.1.2 Since it is both systematic
and convergent, the Eulerian strain expansion
seems, therefore, to represent an optimum way
of characterizing the static lattice equation
of state of all types of solids over extended
ranges of compression. However, a general
physical explanation of this situation has
unfortunately not been reported, although the
consistency of shock compression data with
standard, phenomenological pseudo-potential and
pair-potential models has previously been
discussed.3

Here we present a semiquantitative
explanation of the convergence of the Eulerian
strain expansion from the self-consistent
electron band theory of solids in the local
density approximation for exchange and
correlation. This theory has provided a basis
9or nearly exact calculations of eqguation of

state properties for a great variety of solids.

Several static lattice calculations for
simpler metals have in fact found to be well
represented by nearly linear strain
expansions out to compressions of 3. We find
that the virial theorem can be used with this
theory to relate the bulk modulus and its
higher derivatives to electron kinetic energy
changes during compression. McMahan? has
already identified the latter as an important
factor in changes of phase and electron
bonding at high pressure. The necessary
kinetic enerqy properties for convergence are
then derived in a semiquantitative way from
several appropriate models.

2. VIRIAL THEOREM APPLICATION TO BIRCH
EQUATION
The virial theorem for Coulombic systems
relates the kinetic energy t and potential
energy ¢ components of the internal energy E
to the pressure P
E=t+ ¢ ‘ m
VP = dE/dnp = 2t + ¢ (2)
3 3

If we separate first order energy changes
into scaling, o, and distortion, vy,
components such as
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dt = dgt + dyt (3)
then in Hartree-Fock theory dyo= —dYt so that
dgt = 0. 1n taking higher derivatives of Eq.
(2) to study higher compression module the same
cancellation is not complete and more
complicated expressions result.

It is known that additional small terms must
be added to the pressure Eq. (2) in the local
density approximation. A rough estimate of the
correction for the Hedin-Lundquist model for
exchange-correlation is < 20% the correlation
energy. Looking ahead we will find that the
desired properties depend on changes in the
much larger, electron kinetic energies, permit-
ting us to drop this and other correlation
corrections from further consideration.

Thus we estimate bulk moduli and their high
pressure derivatives from differentiations of
(2) with respect to density, replacing ¢ by
E-t and dE/dfnp by P to get equation in terms
electron kinetic energies and P. For instance
the bulk modulus K and its first pressure
derivative K', the Murnaghan parameter, are
then given at zero pressure simply by

3V Kg = dtszdinpg = t! (4)

Ko'=1/3 = d@nt'/dRnp = ~ (5)
in terms of two convenient kinetic energy
parameters t' and T.

The linear Birch-Murnaghan equation of state
is completely determined by these gquantities,
the pressure being scaled to Ko and the co-
efficient of the linear strain term, Ay by Ky'

Al = 3/2 (Kg' - 4) (6)
The convergence of the strain expansion in the
range of presently available compression data
is then adequately evaluated by looking at the
next two higher strain coefficients Ap and Ag
which involve the next two pressure derivatives
of Kg. By differentiating (2) twice more and

with the use of (4) and (5) we may write
these pressure derivatives at zero pressure
in dimensionless form as

KoKo'' = -Ko' + 8(1 - 1 + dt/dinp) (7
3

K°2K°|u| = _2K°|K°K°|| (8)

+ 8((1 - 1)dt/dinp + dZT/d(anpf 1.
3

Empirically the Kqo' s a large number in
the range 3.5-6 for all solids of interest.
The virial theorem then allows this to be
done with smaller values of t in the range
1-3, according to (5), which values we
justify in the next section in terms of the
behavior of electron kinetic energy in
compression. Here we argue, mainly because
of the large size of Kqo', that the last terms
in (7) and (8) are relatively small as
indicated by the nomenclature. Dropping
them, we may show the smallness of Ay and Aj,
which we express in the form

A2 = [K0K6'+ K$+(K6—l% )(Ké-l%)] (9)

A3 =

@ N

2ill [} LI
{KQ K0 +4K°Ko (Ko lg)

) (10)
* [(K -8} +6]}
¢ 3

Calculations of Ap and A3 in the indicated
approximations (7) and (8) are shown in Table
1 to demonstrate their smallness.

Table 1
Ko! 3.5 4 5 5.5
Ay .21 =117 1.33 3.21

A3 0.63  0.33 -0.54  0.57

Together with smallness of the Eulerian
strain variable (~ AR/R) in the range of
compression data (< .5) these assure very
small non-linear strain contributions to the
equation of state.?



3. MODEL CALCULATIONS OF <

Here we can only qualitatively describe and
summarize calculations of electron energy
changes during compression. For this purpose
it is useful to separate these changes into
their scaling and distortional components; i.e.
from (4)

t'=tl+tlzd_yt_+di_ (m
np dinp

For example in the high density, uniform elec-
tron gas limit t' » tg' = 2t/3 and v - 2/3.

At much lower densities contributions to
kinetic energy changes, t', become increasingly
localized the outer, more polarizable layers of
the atom, as the higher energy valance
electrons gradually become excluded from a
rigid ion core, Such properties are readily
seen in the electronic charge or potential
distribution given by a Thomas-Fermi (TF)
model, which model provides a realistic average
model for equation of state. Table 2 presents
some direct calculations of the kinetic
parameter 1, (5), with the TF model over a

wide range of interatomic radii (Z scaled).

Table 2. Kinetic energy parameter in
Thomas-Fermi theory

21/3g ® 100 25 10 5 0

TTF ? « .45 .57 .65 1.0 » 2/3

Thus in a TF gas model of compressibilities at
normal densities, ranging over 2 < 21/3g, < 20
from metallic H to Cg, kinetic energy changes
raise values of Ko to about 2/3 of normal
values and because of the slow variation of =<
with density are also consistent with the
higher order approximations in Eqs. (7) & (8).
Boundary localization effects play an even
stronger role in full electron-band theory

calculations of energy changes around normal

solid densities. Here electrons find
themselves in band states of definite angular
momentum & (approximately) which are
confined to a region outside of a fixed ion
core, increasing the sensitivity of their
kinetic energy to compression of the atomic
cell. Volume independent core exclusion can
arise both from the centrifugal potential in
non-zero f states and from orthogonal-
ization to much lower states of the same %
in non-threshold cases. These features are
indeed built into the concept of electron
pseudo-potentials and can be treated in a
perturbation theory for the simpler metals.

Here we try to crudely model kinetic energy

effects in such a way as to approximate their
properties in any correct band theory
calculation.

In these cases we may deal exclusively
with the energies of the valence electrons in
Eqs. (4) and (5), and it is convenient to
introduce another logarithmic parameter X,
which may be used to evaluate ty for the
valence electrons

N Edﬁntv i -2 Laemny

(12)
denp v v dnp

First we try an estimate of the
enhancement of ty by a simple,
one-dimensional gas model for radial kinetic
energies in which electrons are confined
between the Wigner-Seitz and inner core radii
of R and R. where

Rc = K¢ R . (13)
Then for instance Ay of Eq. (11) is the sum
of distortional variations of the kinetic
energy t(Kc,R) with respect to K. and scaling
variations with respect to R. Table 3 shows
calculations of the resulting increase, of
Ay and 1, with the ratio K.



Table 3. Core size dependence of kinetic
energy for square well model

K¢ 1/4 1/3 /2 2/3
Ay 8/9 1 4/3 2
Ty 1 1/6 5/3  8/3
dxy/dnp 5 .25 67 (2)
d?vy/d(tnp)2 .08 7 67 (2.3)

The large values of the higher derivatives at
the largest K¢ are taken to be upper limits due
to model deficiencies.

The second non-perturbative model for
valence energy changes we have used is a
semiclassical calculation of low %-band
eigenstates in the Thomas-Fermi potential,
vig. Radial eigen-values, and the corres-
ponding kinetic energies, tg, can be simply
calculated from the semi-classical phase
integral and the corresponding density of
states integral, ng.,

tQ a 1/nic,

+ (14)
- 1 dr = -
Mge = ﬂ‘/: o K SV 2 - vpe)

Estimating derivatives numerically we have
obtained the results in Table 4 for X\ in low
band states for cases where both centrifugal
potential (p-states in C) core orthogonal-

ization (s-states in Rb) are operative.

Table 4. Semiclassical calculations of
T in Thomas-Fermi potential

Element Z]/3R0 TTF Ke Xo N

» varies slowly with R in these calculations so
that we may compare \ directly with tyg, from
Table 2. Large values of \ are seen to occur
in the cases of orthogonalization cores. These

larger values as well as the even larger values

from complete band structure calculations can
average out to the lower TF values by
transfer of electrons to higher angular
momentum states with compression as required
by the TF model. This mechanism plays a key
role also for certain structural phase
transitions of the solid elements, as
reviewed by McMahan.4

N values in Table 4 are particularly
large in view of listed values of calculated
core radii and the square well results of
Table 3. This appears to be due to the
kinetic energy changes in the valence state
itself which are occurring in the outer part
of its wave function. This is the result of
local variations in the electron kinetic
energy changes being proportional to 1/k [see
Eq. (14)]. Thus the square-well model value
of Kc should refer to a larger value, which
partitions the valence potential between
regions of weak and strong values which occur

only under core orthogonalization conditions.
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